Abstract

High quality Zn1−xMgxO epilayers have been grown by means of metal organic chemical vapor deposition technique on top of ZnO templates. The grown samples were investigated by x-ray photoelectron spectroscopy and photoluminescence. The magnesium (Mg) concentration was varied between 0% and 3% in order to study the properties of shallow donors. The free and donor bound excitons could be observed simultaneously in our high quality Zn1−xMgxO epilayers in the photoluminescence spectra. The results indicate that both built-in strain and Mg-concentration influence the donor exciton binding energy. It clearly shows that the donor exciton binding energy decreases with increasing Mg-concentration and with increasing built-in strain. Furthermore, the results indicate that the donor bound exciton transition energy increases with decreasing strength of the built-in strain if the Mg-concentration is kept the same in the Zn1−xMgxO epilayers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.