Abstract

At present, most researchers focus on plane wave incident on targets, but in practical applications, most of the beams are Gaussian beam. We study the scattering fields of Gaussian beam incident on rough cylinders. Coherent and incoherent scattering coefficients are obtained based on the angular spectrum expansion and physical optics approximation, and the effects of cylinder roughness, beam radius, cylinder radius and angle of incidence on scattering coefficients are analyzed. The results show that, for a constant wavelength, when the root mean square height is greater than or equal to 1/5 of the wavelength, the coherent scattering coefficient curve undergoes a change in its distribution, with the peak transforming into a trough. Furthermore, when the root mean square height is greater than or equal to 1/3 of the wavelength, the incoherent scattering coefficient experiences a decline as the root mean square height increases. The correlation length only affects the incoherent scattering coefficient. Both the coherent and incoherent scattering coefficients decrease with the increase in the incident angle. Finally, when the roughness and incident angle are constant, with the increase in the ratio of the cylinder radius to the beam waist radius, the scattered light field is more concentrated. Our results provide the theoretical basis for the measurement of the cylindrical scattering field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.