Abstract
We study numerically the scalar wave emission by a non-spherical oscillation of neutron stars in a scalar-tensor theory of gravity with kinetic screening, considering both the monopole and quadrupole mode emission. In agreement with previous results in the literature, we find that the monopole is always suppressed by the screening effect, regardless of the size of the screening radius, $r_{\rm sc}$. For the quadrupole mode, however, our analysis shows that the suppression only occurs for screening radius larger than the wavelength of scalar waves, $\lambda_{\rm wave}$, but not for $r_{\rm sc} < \lambda_{\rm wave}$. This demonstrates that to fully understand the nature of this theory, it is necessary to study other more complex systems, such as neutron star binaries, considering a wide range of $r_{\rm sc}$ values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.