Abstract

Sago (Metroxylon spp) is one of plant that contains high starch, so it has potential to be utilized as raw material for biopolymer production. This study aims to compare the properties and morphology of sago starch-based biopolymers reinforced by different filler types, including clay, cellulose, zinc oxide and chitosan. Biopolymer sample was prepared at 75 °C with ratio of water to the starch of 10 ml/gr, glycerol content of 0.1 ml/gr of the starch and filler content 6% w/w. The testing included tensile, water uptake and biodegradability properties according to ASTM D882, ASTM D570 and DIN EN ISO 846 standards, respectively. Other testing also conducted for morphology by using scanning electron microscope (SEM). The results showed that biopolymer with chitosan filler has better tensile, water uptake and biodegrability properties compared to other filler type, with tensile stregth of 11 MPa, elongation at break of 9%, water uptake of 10% and biodegrability of 40%. The SEM micrograph shows that the filler still has an agglomerated portion in the starch matrix. Increasing the biopolymer properties is still possible by improving the morphology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call