Abstract
Let G be a subgroup of the automorphism group of a commutative ring with identity T. Let R be a subring of T. We show that RG ⊂ T G is a minimal ring extension whenever R ⊂ T is a minimal extension under various assumptions. Of the two types of minimal ring extensions, integral and integrally closed, both of these properties are passed from R ⊂ T to RG ⊆ T G. An integrally closed minimal ring extension is a flat epimorphic extension as well as a normal pair. We show that each of these properties also pass from R ⊂ T to RG ⊆ T G under certain group action.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.