Abstract

Austenitic steels are recognized as excellent structural materials for pressurized water reactors due to their outstanding mechanical properties and radiation resistance. However, compared to the widely studied FeCrNi series of steels, little is known about the radiation resistance of FeCrNiMn steel. In this study, the generation and evolution of radiation-induced defects in FeCrNiMn steel were investigated by molecular dynamics simulations. The results showed that more defect atoms were produced in the thermal spike stage, but fewer defects survived at the end of the cascades in FeCrNiMn compared to pure Fe. Point defect properties were analyzed by molecular statics, and the formation energies of defects in FeCrNiMn were lower than those of pure Fe, while the migration energies were higher. Compared to FeCrNi, FeCrNiMn had smaller migration energies and a larger overlap of vacancy and interstitial migration energies. The low vacancy formation energies and widely overlapping migration energies suggested that the number of point defects in the thermal spike stage was higher, but the possibility of recombination was greater. Additionally, Mn exhibited the smallest interstitial formation energies and migration energies. The difference in defect migration energies revealed that vacancy and interstitial defects migrate through different alloy constituent elements. This study revealed the underlying mechanism for the excellent irradiation resistance of FeCrNiMn.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.