Abstract

Pentanuclear, cyanide-bridged clusters [M(tmphen)2]3[M'(CN)6]2 (M/M' = Zn/Cr (1), Zn/Fe (2), Fe/Fe (3), Fe/Co (4), and Fe/Cr (5); tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline) were prepared by combining [M'III(CN)6]3- anions with mononuclear complexes of MII ions with two capping tmphen ligands. The clusters consist of a trigonal bipyramidal (TBP) core with three MII ions in the equatorial positions and two M'III ions in the axial positions. Compounds 1-4 are isostructural and crystallize in the monoclinic space group P21/c. Complex 5 crystallizes in the enantiomorphic space group P3221. The magnetic properties of compounds 1 and 2 reflect the contributions of the individual [CrIII(CN)6]3- and [FeIII(CN)6]3- ions. The FeII ions in compounds 3 and 4 exhibit a gradual, temperature-induced spin transition between high spin (HS) and low spin (LS), as determined by the combination of Mössbauer spectroscopy, magnetic measurements, and single-crystal X-ray studies. The investigation of compound 5 by these methods and by IR spectroscopy indicates that cyanide linkage isomerism occurs during cluster formation. The magnetic behavior of 5 is determined by weak ferromagnetic coupling between the axial CrIII centers mediated by the equatorial diamagnetic FeII ions. Mössbauer spectra collected in the presence of a high applied field have allowed, for the first time, the direct experimental observation of uncompensated spin density at diamagnetic metal ions that bridge paramagnetic metal ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.