Abstract

This study characterized probiotics Kocuria SM1 and Rhodococcus SM2, which were recovered from the intestinal microbiota of rainbow trout (Oncorhynchus mykiss, Walbaum). The cultures were Gram-positive, non-motile, catalase-positive and oxidase-negative cocci or rods. Cell multiplication of SM1 and SM2 was observed at 4-37°C (45°C for SM1), in 0-20% (w/v) NaCl and at pH2-11. The viability was not affected when exposed to pepsin at pH2.0 and 3.0, and pancreatin at pH8.0. Neither isolates were chrome azurol S-positive for siderophore production. Of the 19 common enzymes analysed using the API-ZYM system, only 8 were evident in the culture of SM1 compared to 11 enzymes for SM2. The secondary metabolites of both probiotics were inhibitory to Acinetobacter baumannii, Vibrio anguillarum and V. ordalii; SM2 inhibited Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus. SM2 was resistant to penicillin and sulphatriad, out of six antimicrobial agents; SM1 was resistant to sulphatriad. These results suggest that Kocuria SM1 and Rhodococcus SM2 are able to grow over a wide range of temperature, salinity and pH, including in conditions that mimic the gastrointestinal environment of fish and produce extracellular enzymes that may have a role in the host digestive processes. Importantly, Rhodococcus SM2 displays a high degree of bacteriocinogenic potential against multi-drug-resistant human pathogens that have never been documented among the gut microbiota of fish.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call