Abstract
In the present paper, the properties of Portland cement mixtures containing fly ashes (FA) collected at four different Italian municipal solid waste incineration (MSWI) plants were investigated. In particular, physical/mechanical characteristics (setting time, unconfined compressive strength (UCS) and shrinkage/expansion), as well as the acid neutralisation behaviour of the solidified products were considered. The FA composition, revealing enrichment in heavy metals, chlorides and sulphates, significantly altered the hydration behaviour of Portland cement. Consequently, for some of the investigated FA the maximum allowable content for the mixtures to achieve appreciable mechanical strength was 20 wt.%. Even at low FA dosages setting of cement was strongly delayed. In order to improve the properties of FA/cement mixtures, the use of additives was tested. Moreover, the acid neutralisation capacity (ANC) of the solidified products was evaluated in order to assess the ability of the matrix to resist acidification, and also to provide information on hydration progression, as well as on heavy metal release under different pH conditions. Comparison of the results from the present work with previous studies carried out on spiked mixtures lead to the conclusion that the mechanical properties of the stabilised FA could not be predicted based on the effect exerted by heavy metals and anions only, even when the dilution effect exerted on cement was taken into account. It was likely that a major role was also played by alkalis, which were present in the FA at much higher concentrations than in cement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.