Abstract

AbstractMolecular dynamics simulations were carried out on copolymers of both styrene and methyl methacrylate with polyhedral oligomeric silsesquioxane (POSS) derivatives to identify the origin of the property changes imparted upon the chemical incorporation of POSS. Simulations were carried out on these hybrid copolymers and the parent homopolymers to elucidate the effect of the T8, T10, and T12 POSS cages. These POSS comonomers were derivatized with a single polymerizable function and 7, 9, and 11 nonpolymerizable hydrocarbon moieties, respectively. Glass transition temperatures (Tg) were computed from specific volume versus temperature plots. The packing of POSS units around the polymer backbone was analyzed via their radial distribution functions. The effect of POSS on polymer motion was analyzed through the mean square displacement function. The improvements in the elastic moduli upon incorporation of POSS were computed by employing the static deformation method. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 234–248, 2006

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call