Abstract
We investigate properties of optimal designs under the second-order least squares estimator (SLSE) for linear and nonlinear regression models. First we derive equivalence theorems for optimal designs under the SLSE. We then obtain the number of support points in A-, c- and D-optimal designs analytically for several models. Using a generalized scale invariance concept we also study the scale invariance property of D-optimal designs. In addition, numerical algorithms are discussed for finding optimal designs. The results are quite general and can be applied for various linear and nonlinear models. Several applications are presented, including results for fractional polynomial, spline regression and trigonometric regression models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.