Abstract

Using both the exact Bethe ansatz method and the variational method, we study properties of the one-dimensional Fermi polaron. We focus on the binding energy, effective mass, momentum distributions, Tan contact and correlation functions. As the attraction increases, the impurity is more tightly bound and correlated with the surrounding particles, and the size of formed polaron decreases. In addition, compared with the Bethe ansatz method, the variational method is totally qualified to study the one-dimensional Fermi polaron. The intrinsic reason is that the number of particle-hole excitations in a Fermi sea, caused by a single impurity, is always rather small. The variational method can be well extended to other impurity systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.