Abstract

A comparative analysis of monosynaptic afferent and efferent connections of callosal neurons and target neurons of transcallosal fibers with neurons of the specific ipsilateral thalamic nuclei (ventral posterolateral, ventral posteromedial, ventral lateral, and anteroventral) was undertaken on the sensomotor cortex of unanesthetized rabbits, using an electrophysiological method. Differences were demonstrated between callosal neurons and target neurons of transcallosal fibers with respect to monosynaptic inputs from the thalamic nuclei and pathways proceeding toward these structures and (or) entering the pyramidal tract. Among target neurons, compared with callosal neurons, more cells had descending projections (54 and 14%, respectively). Monosynaptic action potentials arose in 22% of target neurons in response to stimulation of specific thalamic nuclei, whereas no such responses occurred in callosal neurons. Projections of target neurons into thalamic nuclei were shown to be formed both by independent fibers and by axon collaterals of the pyramidal tract. It is postulated that the distinctive properties thus discovered indicate significantly greater convergence of influence of thalamic relay neurons on the target neurons; this determines differences known to exist in characteristics of receptive fields and spontaneous and evoked activity of callosal neurons, on the one hand, and of neurons excited synaptically by transcallosal stimulation, on the other hand.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call