Abstract
We study properties of minimal mutation-infinite quivers. In particular we show that every minimal mutation-infinite quiver of at least rank 4 is Louise and has a maximal green sequence. It then follows that the cluster algebras generated by these quivers are locally acyclic and hence equal to their upper cluster algebra. We also study which quivers in a mutation-class have a maximal green sequence. For any rank 3 quiver there are at most 6 quivers in its mutation class that admit a maximal green sequence. We also show that for every rank 4 minimal mutation-infinite quiver there is a finite connected subgraph of the unlabelled exchange graph consisting of quivers that admit a maximal green sequence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.