Abstract

Objectives The objective of this study was to evaluate ternary methacrylate–thiol–ene systems, with varying thiol–ene content and thiol:ene stoichiometry, as dental restorative resin materials. It was hypothesized that an off-stoichiometric thiol–ene component would enhance interactions between the methacrylate and thiol–ene processes to reduce shrinkage stress while maintaining equivalent mechanical properties. Methods Polymerization kinetics and functional group conversions were determined by Fourier transform infrared spectroscopy (FTIR). Cured resin mechanical properties were evaluated using a three-point flexural test, carried out with a hydraulic universal test system. Polymerization shrinkage stress was measured with a tensometer coupled with simultaneous real-time conversion monitoring. Results The incorporation of thiol–ene mixtures as reactive diluents into conventional dimethacrylate resins previously was shown to combine synergistically advantageous methacrylate mechanical properties with the improved polymerization kinetics and reduced shrinkage stress of thiol–ene systems. In these systems, due to thiol consumption resultant from both the thiol–ene reaction and chain transfer involving the methacrylate polymerization, the optimum thiol:ene stoichiometry deviates from the traditional 1:1 ratio. Increasing the thiol:ene stoichiometry up to 3:1 results in systems with equivalent flexural modulus, 6–20% reduced flexural strength, and 5–33% reduced shrinkage stress relative to 1:1 stoichiometric thiol:ene systems. Significance Due to their improved overall functional group conversion, and shrinkage stress reduction while maintaining equivalent flexural modulus, methacrylate–thiol–ene resins, particularly those with excess thiol, beyond the conventional 1:1 thiol:ene molar ratio, yield superior dental restorative materials compared with purely dimethacrylate resins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.