Abstract

BackgroundStandard graphs, where each edge links two nodes, have been extensively used to represent the connectivity of metabolic networks. It is based on this representation that properties of metabolic networks, such as hierarchical and small-world structures, have been elucidated and null models have been proposed to derive biological organization hypotheses. However, these graphs provide a simplistic model of a metabolic network's connectivity map, since metabolic reactions often involve more than two reactants. In other words, this map is better represented as a hypergraph. Consequently, a question that naturally arises in this context is whether these properties truly reflect biological organization or are merely an artifact of the representation.ResultsIn this paper, we address this question by reanalyzing topological properties of the metabolic network of Escherichia coli under a hypergraph representation, as well as standard graph abstractions. We find that when clustering is properly defined for hypergraphs and subsequently used to analyze metabolic networks, the scaling of clustering, and thus the hierarchical structure hypothesis in metabolic networks, become unsupported. Moreover, we find that incorporating the distribution of reaction sizes into the null model further weakens the support for the scaling patterns.ConclusionsThese results combined suggest that the reported scaling of the clustering coefficients in the metabolic graphs and its specific power coefficient may be an artifact of the graph representation, and may not be supported when biochemical reactions are atomically treated as hyperedges. This study highlights the implications of the way a biological system is represented and the null model employed on the elucidated properties, along with their support, of the system.

Highlights

  • Standard graphs, where each edge links two nodes, have been extensively used to represent the connectivity of metabolic networks

  • Given that metabolic reactions may involve more than two reactants, hypergraphs–where an edge connects any finite number of nodes–provide a more realistic model of the connectivity of a metabolic network

  • When clustering is analyzed directly on the hypergraph representation, the scaling property, which has been reported in the literature, becomes poorly supported. These results combined suggest that the reported scaling of the clustering coefficients in the metabolic graphs and its specific power coefficient may be an artifact of the graph structure produced by the abstraction process and may not be supported when biochemical reactions are atomically treated as hyperedges

Read more

Summary

Results

We address this question by reanalyzing topological properties of the metabolic network of Escherichia coli under a hypergraph representation, as well as standard graph abstractions. We find that when clustering is properly defined for hypergraphs and subsequently used to analyze metabolic networks, the scaling of clustering, and the hierarchical structure hypothesis in metabolic networks, become unsupported. We find that incorporating the distribution of reaction sizes into the null model further weakens the support for the scaling patterns

Conclusions
Background
Results and Discussion
Conclusion
Methods
12. Holme P
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call