Abstract

We build on previous work [S. Y. Liem and P. L. A. Popelier, J. Chem. Theory Comput. 4, 353 (2008)], where for the first time, a high-rank multipolar electrostatic potential was used in molecular dynamics simulations of liquid water at a wide range of pressures and temperatures, and using a multipolar Ewald summation. Water is represented as a rigid body, with atomic multipole moments defined by quantum chemical topology partitioning its gas phase electron density. The effect of the level of theory on the local structure of liquid water is systematically addressed. Values for Lennard-Jones (LJ) parameters are optimized, for both oxygen and hydrogen atoms, against bulk properties. The best LJ parameters were then used in a set of simulations at 30 different temperatures (1 atm) and another set at 11 different pressures (at 298 K). Inclusion of the hydrogen LJ parameters significantly increases the self-diffusion coefficient. The behavior of bulk properties was studied and the local water structure analyzed by both radial and spatial distribution functions. Comparisons with familiar point-charge potentials, such as TIP3P, TIP4P, TIP5P, and simple point charge, show the benefits of multipole moments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call