Abstract

AbstractIn this section we point out some fundamental properties of linear operators in Banach spaces. The key assertions presented are the Uniform Boundedness Principle, the Banach-Steinhaus Theorem, the Open Mapping Theorem, the Hahn-Banach Theorem, the Separation Theorem, the Eberlain-Smulyan Theorem and the Banach Theorem. We recall that the collection of all continuous linear operators from a normed linear space X into a normed linear space Y is denoted by \( \mathcal{L}\left( {X,{\mathbf{ }}Y} \right) \) , and \( \mathcal{L}\left( {X,{\mathbf{ }}Y} \right) \) is a normed linear space with the norm $$ ||A||_{\mathcal{L}\left( {X,{\mathbf{ }}Y} \right)} = \sup \left\{ {||Ax||_Y :||x||{\text{x}} \leqslant 1} \right\} $$ .KeywordsHilbert SpaceBanach SpaceLinear OperatorCompact OperatorNonlinear OperatorThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call