Abstract

Results related to two different interface aspects involving diamond are described: (1) the initial states of CVD diamond film growth, and (2) the negative electron affinity and formation of metal-diamond interfaces. The surface and interface properties are probed with STM, Raman scattering/photoluminescence and angle-resolved UV photoemission spectroscopy (ARUPS). STM measurements of diamond nuclei on Si after various plasma growth processes show both flat and hillocked structures characteristics of 2-dimensional and 3-dimensional growth modes, respectively. STS measurements show distinct I– V characteristics of the nuclei and the substrate. The presence of optical defects and the diamond quality are studied with micro-Raman/photoluminescence measurements. The results indicate an increased density of impurity-related defects during the initial stages of growth. The interface properties of Ti on natural crystal (1 1 1) and (1 0 0) surfaces are studied with ARUPS using 21.2 eV HeI emission. Prior to deposition the diamond (1 1 1) is chemically cleaned, and a sharp (0.5 eV FWHM) peak is observed at the position of the conduction band minimum, indicating a negative electron affinity surface. After a subsequent argon plasma clean this peak disappears, while the spectrum shows a shift of 0.5 eV towards higher energies. Upon sub-monolayer titanium deposition on (1 1 1) diamond, the negative electron affinity peak reappears. Further titanium depositions causes this titanium-induced negative electron affinity peak to be attenuated, indicating that the emission originates from the interface. A similar experiment, done on the diamond (1 0 0) surface, however, does not result in a negative electron affinity. By determining the relative positions of the diamond valence band edge and the titanium Fermi level, the Schottky barrier height of titanium on diamond is measured. A model, based on the Schottky barrier height of titanium on diamond, and the work function of titanium, is proposed for the observed titanium-induced negative electron affinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.