Abstract

We compare different means of predicting and rationalizing properties of corrosion films aiming at gaining deeper understanding of the behaviour of copper in aqueous and sulphide-containing environments. Purely geometrical tools ranging from mean bulk information to anisotropic and facet-specific approaches are discussed, and their performances compared against DFT-based stability and property evaluations of a range of interfaces arising from combining low-index crystallographic planes of the compounds Cu, Cu2O, and Cu2S. We demonstrate the necessity to consider facet-specific interactions to understand nanolevel differences between Cu2S and Cu2O film behaviour, and that thin films cannot be directly described by bulk properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.