Abstract
In weighted Hölder spaces it is studied the smoothness of integrals, which have the structure and properties of derivatives of volume potentials which generated by fundamental solutions of the Cauchy problem for one ultraparabolic arbitrary order equation of the Kolmogorov type. The coefficients in this equation depend only on the time variable. Special distances and norms are used for constructing of the weighted Hölder spaces.
 The results of the paper can be used for establishing of the correct solvability of the Cauchy problem and estimates of solutions of the given non-homogeneous equation in corresponding weighted Hölder spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.