Abstract

A difference wave equation is obtained by discretizing a nonlinear acoustic wave equation in atmosphere in the second-order miniterm approximation based on the finite-difference time-domain method. And the pulsed infrasonic wave radiated by a linear array vertical or oblique propagation in moving inhomogeneous atmosphere is numerical simulated in the two-dimensional space, and sound pressure distribution after the different propagation times is investigated in the Wuhan(114 ∶20E, 30 ∶37N) of China and the initial time UT=29000s of summer and winter. The atmospheric inhomogeneity caused by the change of temperature and density, and the atmospheric motion caused by the presence of wind is considered by using the Msise00 and HWM93 models. The pressure difference pr obtained by subtracting no-windy pressure from the windy-pressure in above two seasons indicates that the wind has more influence on the sound field in the infrasonic propagation. The distribution waveform of pr is dependent on season because the actual acoustic velocity depends on season and propagation distance; The influence of wind on the nonlinear propagation is bigger than on the linear propagation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.