Abstract

Graphene nanopowder (GNP) and multi-walled carbon nanotube (MWCNT)-filled epoxy thin-film composites were fabricated using ultrasonication and the spin coating technique. The effect of sonication time (10, 20 and 30min) and GNP loading (0.05–1vol%) on the tensile and electrical properties of GNP/epoxy thin-film composites was investigated. The addition of GNP decreased the material’s tensile strength and modulus. However, among the tested samples, the GNP/epoxy composites produced using 20min of sonication time had a slightly higher tensile strength and modulus, with a lower electrical percolation threshold volume fraction. The effect of sonication time was supported by morphological analysis, which showed an improvement in GNP dispersion with increased sonication time. However, GNP deformation was observed after a long sonication time. The GNP/epoxy composites at different filler loadings showed higher electrical properties but slightly lower tensile properties compared with the MWCNT/epoxy composites fabricated using 20min of sonication time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call