Abstract
In recent years, physical elements of transcription have emerged as central in our understanding of gene expression. Recent work has been done introducing a simple description of the basic physical elements of transcription where RNA elongation, RNA polymerase (RNAP) rotation and DNA supercoiling are coupled (1). Here we generalize this framework to accommodate the behavior of many RNAPs operating on multiple genes on a shared piece of DNA. The resulting framework is combined with well-established stochastic processes of transcription resulting in a model which characterizes the impact of the mechanical properties of transcription on gene expression and DNA structure. Transcriptional bursting readily emerges as a common phenomenon with origins in the geometric nature of the genetic system and results in the bounding of gene expression statistics. Properties of a multiple gene system are examined with special attention paid to the role that genome composition (gene orientation, size and intergenic distance) plays in the ability of genes to transcribe. The role of transcription in shaping DNA structure is examined and the possibility of transcription driven domain formation is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.