Abstract

This study reports on the use of a template that is made of silver nanoparticles (ANPs) that are dispersed on a patterned sapphire substrate (PSS) to improve the light output power of GaN-based light-emitting diodes (LEDs). The dipping of a sapphire substrate in hot H2SO4 solution generates white reaction products that are identified as a mixture of polycrystalline aluminum sulfates. These white reaction products can act as a natural etching mask in the preparation of an ANP-coated PSS (PSS-ANP) template. The optimal annealing temperature and time, surface morphology, and optical characteristics of the PSS-ANP template were investigated. The light output power of an LED that is bonded to the PSS-ANP template is approximately double than that of an LED that is not.

Highlights

  • Rapid advances on the many fronts in the field of GaNbased technology, including in the growth of materials, have promoted the commercialization of green and blue light-emitting diodes (LEDs) and laser diodes [1]

  • The white reaction products of the sapphire substrate and the H2SO4 solution are identified as a mixture of polycrystalline aluminum sulfates, Al2(SO4)3 and Al2(SO4)3·17H2O [10]

  • In summary, this study reports on the construction of a template by dispersing a silver nanoparticle (ANP) on a patterned sapphire substrate (PSS) to improve the light output power of GaN-based LEDs

Read more

Summary

Introduction

Rapid advances on the many fronts in the field of GaNbased technology, including in the growth of materials, have promoted the commercialization of green and blue light-emitting diodes (LEDs) and laser diodes [1]. Sapphire has been the most extensively used substrate for GaN growth owing to its relatively low cost, chemical compatibility, and stability at high temperatures. One of the greatest problems is the lack of a suitable substrate material on which lattice-matched GaN films can be grown. GaN heteroepitaxial films that are grown on sapphire substrate using various growth techniques have been studied widely [1,2,3,4,5]. To increase the internal quantum efficiency and light extraction efficiency of GaN-based LEDs, they are fabricated on a patterned sapphire substrate (PSS)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.