Abstract

Stimulated by the recent preparation and characterization of the first [50]fullerene derivative, decachlorofullerene[50] (Science 2004, 304, 699), we have performed a systematic density functional study on the electronic and spectroscopic properties of C(50), its anions and derivatives such as C(50)Cl(10) and C(50)Cl(12). The ground state of C(50) has D(3) symmetry with a spheroid shape, and is highly aromatic; the best D(5h)C(50) singlet is nonaromatic. Both D(3)() and D(5h)() isomers of C(50) have high electron affinities and can be reduced easily. Due to the unstable fused pentagon structural features, C(50) is chemically labile and subject to addition reactions such as chlorination, dimerization and polymerization. The equatorial pentagon-pentagon fusions of D(5h)C(50) are active sites for chemical reactions; hence, D(5h)C(50) may behave as a multivalent group. The computed IR, Raman, (13)C NMR and UV-vis spectra of the D(5h)C(50)Cl(10) molecule agree well with the experimental data. Finally, D(5h)C(50)Cl(10) is predicted to have a high electron affinity and, hence, might serve as an electron-acceptor in photonic/photovoltaic applications. The geometry and (13)C NMR chemical shifts of C(50)Cl(12) were computed to assist further isolation experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.