Abstract

This paper investigates the effect of fly ash on strength and fracture properties of the interfaces between the cement mortar and aggregates. The mortars were prepared at a water-to-binder ratio of 0.3, with fly ash replacements from 15 to 55%. Notched mortar beams were tested to determine the flexural strength, fracture toughness, and fracture energy of the plain cement and fly-ash modified cement mortars. Another set of notched beams with mortar-aggregate interface above the notch was tested to determine the flexural strength, fracture toughness, and fracture energy of the interface. Mortar-aggregate interface cubes were tested to determine the splitting strength of the interface. It was found that a 15% fly ash replacement increased the interfacial bond strength and fracture toughness. Fly ash replacements at the levels of 45 and 55% reduced the interfacial bond strength and fracture toughness at 28 days, but recovered almost all the reduction at 90 days. Fly ash replacement at all levels studied increased the interfacial fracture energy. Fly ash contributed to the interfacial properties mainly through the pozzolanic effect. For higher percentages of replacement, the development of interfacial bond strength initially fell behind the development of compressive strength. But at later ages, the former surpassed the latter. Strengthening of the interfaces leads to higher long-term strength increases and excellent durability for high-volume fly ash concrete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.