Abstract
Flame retardant modification of leaf fibers was carried out to solve the technical problem of poor fire resistance of plant fibers and improve the utilization rate of urban fallen leaves in building materials. The modification scheme adopts three flame retardants, i.e., ammonium polyphosphate (APP), magnesium hydroxide (MH), and aluminum hydroxide (ATH), and two covering layers, i.e., pure acrylic polymer lotion and water glass (Na2O · nSiO2) solution. The modified leaf fiber's combustion behavior and pyrolysis properties were tested and analyzed. The physical and mechanical characteristics, as well as the thermal insulation qualities, of leaf fiber cement-based composites (LFCC) were studied at high temperatures. The findings revealed that the three flame retardants had an effect on the chemical structure of leaf fibers. In comparison to leaf fibers without flame-retardant modification, flame-retardant-modified leaf fibers have a much greater thermal stability. and its LOI is greater than 27.0%, which is a fire-retardant material. Except for the sample with water glass as the modified cover layer, at high temperatures, the composite flame-retardant fiber LFCC's mass-loss rate is lower compared with fibers without flame-retardant modification or fibers modified with only one kind of flame-retardant. In the composite flame-retardant modified fiber LFCC, the samples with better strength at high temperature are those with ATH replacing 30% and 50% MH. The thermal conductivity of LFCC is negatively correlated with the range of temperature change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.