Abstract

Flame-retardant cellulose fibers were prepared by dissolving cellulose in tetrabutylammonium acetate and dimethyl sulfoxide, and blending with amino silicone oil (ASO). The ASO was used as a novel fabric softener and flame retardant for cellulose fibers. Fourier-transform infrared spectroscopy showed that blending with ASO did not adversely affect the cellulose fibers. The flame retardancy of the cellulose fibers blended with ASO was determined based on the limiting oxygen index (LOI). Cellulose fibers blended with 8 wt% (add-on) ASO gave the best flame retardancy, with an LOI of 28, which was higher than that of the virgin fibers. The thermal properties of the flame-retardant cellulose fibers were investigated using differential scanning calorimetry and thermogravimetric analysis. The results showed that ASO prevented degradation of the cellulose fibers, hindered the formation of volatile species, and favored char formation. The mechanical properties of the flame-retardant cellulose fibers were better than those of virgin cellulose fibers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call