Abstract

The chemical stability, electronic structures, mechanical properties and Debye temperature of Fe–Mn–Al alloys were investigated using first-principles calculations. The formation enthalpy and cohesive energy are negative for Fe–Mn–Al alloys, showing that they are thermodynamically stable. FeAl has the lowest formation enthalpy, indicating that FeAl is the most stable alloy in the Fe–Mn–Al system. The partial density of states, total density of states and electron density distribution maps were used to analyze the physical properties of the Fe–Mn–Al alloys. A combination of mainly covalent and metallic bonds exists in these Fe–Mn–Al alloys, resulting in good electronic conductivity, high melting points, and high hardness. These alloys display disparate anisotropy due to the calculated different shapes of the 3D curved surface of the Young’s modulus and anisotropic index. FeAl has the highest bulk modulus, shear modulus and Yong’s modulus of 187.1, 119.8 and 296.2 GPa, respectively. Further, the Debye temperatures and sound velocity of these Fe–Mn–Al compounds were explored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.