Abstract

The properties of energetic (65–95 keV) cometary water-group ions in the extended solar wind pick-up region surrounding comet Giacobini-Zinner are examined using data from the EPAS instrument on the ICE spacecraft. In the outer part of this region, extending from cometocentric distances of several hundred thousand to a few million kilometres (the limit of pick-up ion detectability), it is found that large modulations of the ion flux occur (with J MAX J MIN ≅ 10 2-10 3 ) which are related to the direction of the magnetic field. It is also found that the ions stream in a direction which is intermediate between the directions of the solar wind flow and the E × B drift, and that ions are present at energies somewhat above the local pick-up energy. These properties indicate that the waves which are excited by the unstable “ring-beam” pick-up ion velocity distributions do result in significant scattering of the ions in this region, both in pitch angle and in energy, but that they have insufficient amplitude to scatter the ions into near isotropy in the solar wind frame. Closer to the comet (but still upstream from the bow shock), the ion flux modulations are considerably reduced in amplitude and the ions respond less to the E × B drift, indicating that the ions are scattered nearer to isotropy in this region. Inbound, this transition takes place relatively abruptly at a distance of ∼4 × 10 5 km in association with an increase in the solar wind speed, after which the ion flux increases, and ceases to be modulated by the field direction, while the streaming direction is continuously antisolar and unmodulated by the direction of the E × B drift. Outbound, weak vestiges of the ring-beam ion anisotropy are present in the region immediately upstream from the bow shock (at −1 × 10 5 km), but these become more marked at distances in excess of t4 × 10 5 km, increasing gradually with increasing distance from the comet. It is shown that the evolution of the ion properties is qualitatively consistent with expectations based on quasi-linear diffusion of the ions by the magnetosonic waves observed during the encounter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call