Abstract
Properties of six-quark dibaryons in nuclear medium are considered by example of $A=6$ nuclei within the three-cluster $\alpha+2N$ model. Dibaryon production in nuclei leads to the appearance of a three-body force between the dibaryon and nuclear core. This non-conventional scalar force is shown to provide an additional attractive contribution to the three-body binding energy. This three-body contribution improves noticeably agreement between theoretical results and experimental data for the majority of observables. The most serious difference between the traditional $NN$-force models and the dibaryon-induced model is found for the nucleon momentum distribution, the latter model providing a strong enrichment of the high-momentum components both for $^6$Li and $^6$He cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.