Abstract

AbstractEquilibrium properties of hydrogen‐helium mixtures under thermodynamic conditions found in the interior of giant gas planets are studied by means of density functional theory molecular dynamics simulations. Special emphasis is placed on the molecular‐to‐atomic transition in the fluid phase of hydrogen in the presence of helium. Helium has a substantial influence on the stability of hydrogen molecules. The molecular bond is strengthened and its length is shortened as a result of the increased localization of the electron charge around the helium atoms, which leads to more stable hydrogen molecules compared to pure hydrogen for the same thermodynamic conditions. The ab initio treatment of the mixture enables us to investigate the structure of the liquid and to discuss hydrogen‐hydrogen, helium‐helium, and hydrogen‐helium correlations on the basis of pair correlation functions. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.