Abstract

The variation of the transmission coefficient with defect mode frequency in a geometrically chirped photonic crystal with central defect layer has been investigated theoretically using transfer matrix method and validated experimentally by fabricating and characterizing such photonic crystals. The defect mode frequency is extracted by modeling the defect layer as a Fabry–Perot resonant cavity with mirrors replaced by two geometrically chirped photonic crystals. It is shown that the structural asymmetry of the chirped photonic crystals with respect to the central defect layer affects the width of the photonic band gap and also induces coupling variation between the eigenmodes of the defect layer and those at the band edges of the constituent photonic crystals. This leads to variation in the defect mode transmittance across the photonic band gap and introduces notches at positions where the eigenmodes of the band edges have maximum transmission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call