Abstract

The self-consistent phonon theory of anharmonic lattice dynamics, devised independently by several authors using varying techniques and implemented computationally by Koehler, is here applied to the crystals of neon and argon. A Lennard-Jones 6-12 interatomic potential is assumed. The quantities calculated are the phonon spectrum and the bulk thermodynamic properties of thermal expansion, compressibility, and specific heat, all as a function of temperature at zero pressure. Although the computations are intended primarily to explore in detail the content of the self-consistent phonon approximation preparatory to incorporating the more elaborate expressions of the next higher approximation, comparison is made with the existing experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.