Abstract

Copper and molybdenum sulfide nanopowders were prepared by self-propagating high-temperature synthesis in argon. The initial copper powder and molybdenum powder were produced by electric spark dispersion in hexane and by electrical explosion of wires (EEW) in argon, respectively. The powders were studied by electron microscopy, X-ray diffraction and Raman spectroscopy. The copper sulfide main phase is hexagonal 2H-CuS, whereas hexagonal 2H-MoS2 and rhombohedral 3R-MoS2 are characteristic for molybdenum disulfide. The lattice parameters of copper and molybdenum sulfides were calculated. The average particle size of copper sulfide and molybdenum disulfide powders was about 50 nm and 80 nm, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.