Abstract

The proper disposal of fibre waste products is a significant issue for the GFRP industries; as a result, the reuse and recycling of these waste products require sustainable solutions. Given that FRP materials, especially those created with thermosetting resins, cannot be reprocessed, so the majority of thermosetting FRP waste will be dumped in landfills. Innovative approaches are thus required to manage waste. This study investigates the performance of the FRP waste, known as Glass Fibre Reinforced Polymer (GFRP), that is ground to 0.15mm to 2.36mm in size and used to replace sand at 5%, 10%, 15%, 20%, and 25% by weight of the concrete composite. The experimental work starts with the grinding and sieving process, followed by preparing grade 45 concrete. Then the workability of concrete with GFRP was determined, followed by the compression, and split tensile strengths. The findings showed that adding up to 5% of GFRP waste as a partial replacement for fine aggregate improved the workability and compressive strength of the concrete mix. but decreases when more GFRP waste is added. While the split tensile strength shows increments in line with the increasing amount of GFRP waste replacement. It can be concluded that GFRP waste replacement has the potential to be used in the construction industry, however, the long-term performance must be determined first.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.