Abstract

3D printing technology has great potential for the reconstruction of human skin. However, the reconstructed skin has some differences from natural skin, largely because the hydrogel used does not have the appropriate biological and physical properties to allow healing and regeneration. This study examines the swelling, degradability, microstructure and biological properties of Collagen/Sodium Alginate (Col/SA) hydrogels of differing compositions for the purposes of skin printing. Increasing the content of sodium alginate causes the hydrogel to exhibit stronger mechanical and swelling properties, a faster degradation ratio, smaller pore size, and less favorable biological properties. An optimal 1% collagen hydrogel was used to print bi-layer skin in which fibroblasts and keratinocytes showed improved spreading and proliferation as compared to other developed formulations. The Col/SA hydrogels presented suitable tunability and properties to be used as a bioink for bioprinting of skin aiming at finding applications as 3D models for wound healing research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.