Abstract
Fine particles in seawater commonly form large porous aggregates. Aggregate density and settling velocity determine the behavior of this suspended particulate matter (SPM) within the water column. However, few studies of aggregate particles over a continental shelf have been undertaken. In our case study, properties of aggregate particles, including size and composition, over the continental shelf of the North Yellow Sea were investigated. During a scientific cruise in July 2016, in situ effective particle size distributions of SPM at 10 stations were measured, while temperature and turbidity measurements and samples of water were obtained from surface, middle, and bottom layers. Dispersed and inorganic particle size distributions were determined in the laboratory. The in situ SPM was divided into (1) small particles ( 256 μm). Large particles and medium particles dominated the total volume concentrations (VCs) of in situ SPM. After dispersion, the VCs of medium particles decreased to low values (<0.1 μL/L). The VCs of large particles in the surface and middle layers also decreased markedly, although they had higher peak values (0.1–1 μL/L). This suggests that almost all in situ medium particles and some large particles were aggregated, while other large particles were single particles. Correlation analysis showed that primary particles <32 μm influenced the formation of these aggregates. Microscopic examination revealed that these aggregates consisted of both organic and inorganic fine particles, while large particles were mucus-bound organic aggregates or individual plankton. The vertical distribution of coarser particles was clearly related to water stratification. Generally, medium aggregate particles were dominant in SPM of the bottom layer. A thermocline blocked resuspension of fine material into upper layers, yielding low VCs of medium-sized aggregate particles in the surface layer. Abundant large biogenic particles were present in both surface and middle layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.