Abstract
Abstract This paper presents the experimental findings of a study on the performance of waste ceramic powder (WCP) as binder on the mechanical and microstructure properties of alkali activated mortars (AAMs) containing ground blast furnace slag (GBFS) and fly ash (FA). In this study, the ternary blend was activated with low concentration of alkaline solution (4 M). WCP was kept with high content of 50%, 60% and 70% for the total binder. After casting operation, the specimens were cured at ambient temperature of 27 °C and tested at eight different ages of 1, 3, 7, 28, 56, 90, 180 and 360 days. Microstructure tests such as X-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR) were conducted to evaluate the effect of high content of WCP on the formulation of sodium aluminium silicate hydrate (N-A-S-H), calcium aluminium silicate hydrate (C-A-S-H) and calcium silicate hydrate (C-S-H) gels. Test results indicated that high volume WCP produced environmental friendly alkali activated mortars with compressive strength higher than 70 MPa at age of 28 days. The results also showed that the workability and setting time of alkali activated mortars enhanced with the increase in WCP content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.