Abstract

Supercapacitors have attracted attention as efficient energy storage systems owing to their high power density and cycling stability. The use of appropriate electrode materials is important for high-performance supercapacitors, and various carbon materials have been studied as supercapacitor electrodes. In this study, carbon nanofibers with high specific surface areas were fabricated via a simple electrospinning process. Carbon nanofibers were fabricated by adjusting the ratio of polyacrylonitrile (PAN) to bisphenol A (BPA) and evaluated as electrode materials for supercapacitors. With the addition of BPA, improved specific surface area and oxygen functional groups were observed compared with nanofibers using only PAN. Therefore, BPA3, which had the highest specific surface area, exhibited a 28% improvement in capacitance (162 F/g) compared with BPA0 fabricated using only PAN. Carbon nanofibers fabricated by adjusting the ratio of BPA to PAN are promising electrodes for supercapacitors owing to their high capacitance and stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.