Abstract
A model of star-branched polymer chains confined in a slit formed by two parallel surfaces was studied. The chains were embedded to a simple cubic lattice and consisted of f=3 branches of equal length. The macromolecules had the excluded volume and the confining surfaces were impenetrable for polymer segments. No attractive interactions between polymer segments and then between polymer segments and the surfaces were assumed and therefore the system was a thermal. Monte Carlo simulations were carried out employing the sampling algorithm based on chain's local changes of conformation. Lateral diffusion of star-branched chains was studied. Dynamic properties of star-branched chains between the walls with impenetrable rod-like obstacles were also studied and compared to the previous case. The density profiles of polymer segments on the slit were determined. The analysis of contacts between the polymer chain and the surfaces was also carried out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.