Abstract

Boron-fiber-reinforced Al-matrix composite was fabricated by a pulsed current hot pressing (PCHP) process at a pressure of 32MPa for 600s. It was found that the boron fiber and the Al-matrix were well bonded when the PCHP process was performed at a holding temperature of 773K. No interfacial reaction layer was observed along the interface between the boron fiber and the matrix when PCHP was done at 773K for 600s. Tensile deformation carried out at room temperature for the composite showed that the tensile yield stress increased with increasing volume fraction of the boron fiber in the composite. The composite with 17.2 vol.% of boron fiber presented a tensile yield stress of 600MPa. This value was about 90% the yield stress estimated by a force equilibrium equation of a composite taking into account the direction of fiber axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.