Abstract

Boron-doped ZnO thin films were prepared by using metal organic chemical-vapor deposition (MOCVD) with diethyl zinc and water as precursors and B2H6 as the dopant gas. The effects of the flow rates of H2O and B2H6 on the growth and the electrical properties of boron-doped ZnO thin film were investigated. The maximum carrier concentration and mobility and the minimum resistivity obtained under these experimental conditions were 7 × 1020 /cm3, 42 cm2 /V·sec and 4 × 10−4 Ω·cm, respectively, at room temperature. The electrical properties, growth rates, transmittances, and surface morphologies of the ZnO:B films grown using MOCVD are strongly affected by growth conditions such as the relative flow rates of the precursors and dopant gases and the chamber pressure, and these effects are discussed in detail in this article.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call