Abstract

Biochar production and use are part of the modern agenda to recycle wastes, and to retain nutrients, pollutants, and heavy metals in the soil and to offset some greenhouse gas emissions. Biochars from wood (eucalyptus sawdust, pine bark), sugarcane bagasse, and substances rich in nutrients (coffee husk, chicken manure) produced at 350, 450 and 750°C were characterized to identify agronomic and environmental benefits, which may enhance soil quality. Biochars derived from wood and sugarcane have greater potential for improving C storage in tropical soils due to a higher aromatic character, high C concentration, low H/C ratio, and FTIR spectra features as compared to nutrient-rich biochars. The high ash content associated with alkaline chemical species such as KHCO3 and CaCO3, verified by XRD analysis, made chicken manure and coffee husk biochars potential liming agents for remediating acidic soils. High Ca and K contents in chicken manure and coffee husk biomass can significantly replace conventional sources of K (mostly imported in Brazil) and Ca, suggesting a high agronomic value for these biochars. High-ash biochars, such as chicken manure and coffee husk, produced at low-temperatures (350 and 450°C) exhibited high CEC values, which can be considered as a potential applicable material to increase nutrient retention in soil. Therefore, the agronomic value of the biochars in this study is predominantly regulated by the nutrient richness of the biomass, but an increase in pyrolysis temperature to 750°C can strongly decrease the adsorptive capacities of chicken manure and coffee husk biochars. A diagram of the agronomic potential and environmental benefits is presented, along with some guidelines to relate biochar properties with potential agronomic and environmental uses. Based on biochar properties, research needs are identified and directions for future trials are delineated.

Highlights

  • Large amounts of crop residues are generated worldwide and they are not always properly disposed of or recycled

  • According to derivative thermogravimetric (DTG) curves of biomass losses (S1 Fig), ES and SB showed higher mass loss between 250 and 350 ̊C, which is attributed to high cellulose content in the biomass [28], which is degraded during low-temperature pyrolysis

  • Biochars of ES, SB, and PB produced at all pyrolysis temperatures used in this study showed reduced liming values (Fig 4B), i.e, the ability to correct soil acidity should be evaluated by the pH value

Read more

Summary

Introduction

Large amounts of crop residues are generated worldwide and they are not always properly disposed of or recycled. Wood log production in Brazil generates about 50.8 million m3 of lignocellulosic residue yearly [1], while nearly 200 million tons/year of sugarcane bagasse is generated [2]. In 2016, 49 million bags of coffee [3] were harvested and almost the same amount (by weight) of coffee husk was produced. Based on the Brazilian chicken flock and on the average amount of manure produced per animal, about 12 million t year-1 of manure were generated in Brazil in 2009 [1]. Chicken manure is characterized by high N, P, Ca, and micronutrient contents, while coffee husk contains the highest K concentration [4]. Sugarcane bagasse and wood-derived wastes have low amounts of nutrients and high lignin and cellulose content

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call