Abstract

In this study, barium zirconate powder was prepared by a solid-state reaction using different barium and zirconium sources. Thermal analysis and phase identification demonstrated that barium zirconate could be synthesized from barium hydroxide at a lower temperature than from barium carbonate. Copper oxide was used as a dopant to improve the sintering performance of the barium zirconate; sintered samples with 2 mol% copper oxide exhibited relatively superior comprehensive performance. The mechanical properties and thermal stability of barium zirconate were characterized; the internal composition structure of the samples prepared with basic zirconium carbonate was uneven, resulting in somewhat reduced performance. The samples maintained a high elastic modulus and strength before and after thermal shock. It was observed under an electron microscope that a liquid phase was generated inside the samples after thermal shock, and numerous barium zirconate whiskers were formed. The whiskers ensured that the sample could withstand greater thermal stress, thus exhibiting excellent thermal shock stability. This work demonstrates the promising potential of barium zirconate in the field of high-temperature materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.