Abstract
This study reports the testing of 12 alkali-activated (AA) mortars and six AA concretes using lightweight aggregates. These tests aimed to explore the significance and limitations of the development of lightweight AA mortar and concrete. Ground granulated blast-furnace slag, which was used as source material, was activated by sodium silicate powder. The main parameter investigated was the replacement level of lightweight fine aggregates to the natural sand. The effect of the water–binder ratio on the compressive strength development was also studied in AA mortars. Initial flow and development of compressive strength were recorded for the lightweight AA mortar. For the lightweight AA concrete, many factors were measured: the variation of slump with elapsed time, the development of compressive strength, splitting tensile strength, moduli of rupture and elasticity, stress–strain relationship, bond strength and shrinkage strain. Test results showed that the compressive strength of AA mortar decreased linearly with the increase of the replacement level of lightweight fine aggregates, regardless of the water–binder ratio. The compressive strength of AA concrete, however, sharply decreased when the replacement level of lightweight fine aggregates exceeded 30%. In particular, the increase in the discontinuous grading of lightweight aggregate resulted in the deterioration of the mechanical properties of AA concrete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.