Abstract

Concrete structures for sealing of tunnels in the host rock are an essential part of systems for nuclear waste storage. However, concretes based on blended cements or magnesium oxychloride cements, which are commonly considered for this application, can deteriorate severely due to a significant heat of hydration and associated deformation and cracking. Alkali-activated materials (AAMs) offer a potential solution to this problem because of their low heat release during hardening. To explore their suitability for the construction of sealing structures in evaporite rock, various AAMs with salt aggregate were studied regarding fresh properties, heat release, mechanical properties and microstructure. The heat of reaction of the AAMs was up to 55% lower than that of a blended cement designed for sealing structures, indicating significant benefits for the intended application. Other relevant properties such as mechanical strength and permeability depended strongly on the mix-design of the AAMs and curing conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.