Abstract

Thermoplastic elastomers and their foams were prepared by blending elastomeric acrylonitrile butadiene rubber (NBR) and rigid poly(lactic acid) (PLA) with various PLA compositions ranging between 0 and 40%. The thermal and mechanical properties and the morphologies of the blends with various PLA contents were investigated through universal testing machine, differential scanning calorimetry, thermogravimetric analysis, and scanning electron microscope analysis. The rheological properties during gel formation were in situ monitored through the evolution of torque with curing time. Furthermore, the microcellular structures and physical properties of the NBR/PLA foams prepared using organic blowing agents were studied. The NBR/PLA blends showed a two-phase morphology made of a continuous NBR matrix and micron or submicron nodules and the tensile strength and modulus; also, hardness of the NBR/PLA blends increased with the increase of the added PLA content. While the foamed samples exhibited a similar cell structure and foaming ratio to that of the pure NBR, the cell formation was considerably reduced as the added PLA content exceeded 30%. We conclude that the mechanical properties of NBR thermoplastic elastomer as well as its foams can be controlled by a judicious introduction of rigid and biodegradable PLA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call