Abstract

Channelrhodopsins have been utilized in gene therapy to restore vision in patients with retinitis pigmentosa and their channel kinetics are an important factor to consider in such applications. We investigated the channel kinetics of ComV1 variants with different amino acid residues at the 172nd position. Patch clamp methods were used to record the photocurrents induced by stimuli from diodes in HEK293 cells transfected with plasmid vectors. The channel kinetics (τon and τoff) were considerably altered by the replacement of the 172nd amino acid and was dependent on the amino acid characteristics. The size of amino acids at this position correlated with τon and decay, whereas the solubility correlated with τon and τoff. Molecular dynamic simulation indicated that the ion tunnel constructed by H172, E121, and R306 widened due to H172A variant, whereas the interaction between A172 and the surrounding amino acids weakened compared with H172. The bottleneck radius of the ion gate constructed with the 172nd amino acid affected the photocurrent and channel kinetics. The 172nd amino acid in ComV1 is a key residue for determining channel kinetics as its properties alter the radius of the ion gate. Our findings can be used to improve the channel kinetics of channelrhodopsins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call